MAYO CLINIC みつ

Genotype-Phenotype Correlations in Patients with STAT1 Gain-of-Function Mutations: A Case Series

BACKGROUND

- STAT1 gain-of-function (GOF) mutations lead to chronic mucocutaneous candidiasis (CMC) and a wide range of complications, including bacterial/viral infections, autoimmunity, endocrinopathies, lymphoproliferation, and malignancies.
- Severe complications such as invasive infections, cerebral aneurysms, and malignancies are key predictors of poor prognosis.
- Understanding genotype-phenotype correlations is essential for early risk stratification and guiding personalized therapeutic strategies.

OBJECTIVE

• This study characterizes genotype-phenotype correlations in patients with STAT1 GOF mutations and evaluate how specific mutations impact clinical presentation, disease severity, and treatment response.

METHODS

- **Study Design:** Retrospective cohort study of Mayo Clinic Health System records.
- Timeline: January 2009 to December 2024.
- Inclusion criteria: Patients of all ages with genetically confirmed heterozygous STAT1 gain-of-function mutations.
- **Data Collection:** Demographics, clinical history, immunologic evaluations, genetic testing results, disease manifestations, treatments and clinical outcomes.

RESULTS

• Five patients (1 male, 4 females; mean age at diagnosis: 21.7 years) were identified with heterozygous STAT1 GOF mutations.

Figure 1. Structural Domains of the STAT1 Protein

Abbreviations: DBL

Table II. Genotype-Phenotype Correlation by Mutation Group

Phenotypic

Chronic muco candidi Recurrent sino infectio Multidrug-re infectio Histoplasi

Bronchied

Autoimm

Neurologic cor

Deceas

Valerie Jaroenpuntaruk, MD, Avni Joshi, MD, MS Division of Allergic Diseases, Mayo Clinic, Rochester, MN

Table I. Demographics								
Age at Dx (yrs)	Gender	Mutation	AA Change	Domain Properties ∆				
3.5	F	c.1154C>T	p.Thr385Met	DBD B > A				
17.2	М	c.1154C>T	p.Thr385Met	DBD B > A				
31.8	F	c.1154C>T	p.Thr385Met	DBD B > A				
30.3	F	c.1310C>T	p.Thr437lle	DBD B > A				
25.7	F	c.856A>G	p.Lys286Glu	CCD D > C				
21.7								

Amino acid side chain properties: A = Hydrophobic; B = Hydrophilic, non-charged; C = Hydrophilic, negatively charged; D = Hydrophilic, positively charged

: Feature	c.1154C>T p.Thr385Met (N=3)	c.1310C>T p.Thr437lle (N=1)	c.856A>G p.Lys286Glu (N=1)	Total (N=5)
ocutaneous iasis	3	1	1	5
opulmonary ons	3	1	1	5
resistant ons	0	0	1	1
smosis	0	1	0	1
ectasis	2	0	0	2
nunity	3	0	0	3
mplications	0	0	1	1
sed	0	0	1	1

- All patients had chronic mucocutaneous candidiasis and recurrent sinopulmonary infections.
- Mutation distribution:
 - Three patients had c.1154C>T (p.Thr385Met)), in the DBD
 - enteropathy), and bronchiectasis.
 - to tofacitinib.
 - One had c.1310C>T (p.Thr437lle), in the DBD
 - persistent histoplasmosis.
 - - pneumonia and Monkeypox.

- diverse mutation-specific clinical patterns.
- immunodeficiency, autoimmunity, and invasive infections—due to accumulation.
- treatment response, reflecting the heterogeneity of this condition.
- ongoing monitoring, and continuous administration.
 - may not be strictly mutation-specific.
- stem cell transplantation in severe or refractory cases.

CONCLUSION

Genotype-specific insights in STAT1 GOF are essential to inform prognosis and tailor individualized treatment strategies.

RESULTS

• Early-onset infections, severe autoimmunity (e.g., pancytopenia,

• All required ruxolitinib; one with poor response was transitioned

• Late childhood onset of symptoms, later complicated by

• One had c.856A>G (p.Lys286Glu) in the Coiled Coil Domain (CCD) • Severe multidrug-resistant infections, coagulopathy, neurologic complications, poor ruxolitinib response, and death from MSSA

DISCUSSION

Genotype-phenotype correlations in STAT1 GOF mutations highlight a

DBD mutations are linked to more severe phenotypes—early-onset enhanced STAT1 activity from impaired dephosphorylation and nuclear

CCD mutations demonstrate broader multisystem involvement and poor

JAK inhibitors show therapeutic promise but require personalized dosing,

• Limited impact on underlying epigenetic abnormalities, and response

Early genetic diagnosis is critical with consideration for hematopoietic

